Proses Pemindai pada STM

STM merupakan mikroskop yang mampu menghasilkan gambar dalam skala atomik sehingga mampu melihat atom dan molekul.

Mekanisme Pembakaran

Pada artikel ini dibahas secara singkat bagaimana pembakaran terjadi pada senyawa organik terutama polimer

Korosi Celah

Korosi celah disebabkan oleh adanya air yang terjebak pada celah sempit antar sambungan atau retakan.

Material karbon

Saat ini nanomaterial karbon seperti CNT dan grafen banyak menarik perhatian karena sifatnya yang unik.

Zeolit

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Tampilkan postingan dengan label alternative energy. Tampilkan semua postingan
Tampilkan postingan dengan label alternative energy. Tampilkan semua postingan

Green to Green


Walaupun daya yang dihasilkan oleh matahari jauh lebih besar daripada batubara, panel surya tidak sepenuhnya ramah lingkungan. Pembuatan panel surya membutuhkan energi yang tidak sedikit. Selain itu panel surya juga menghasilkan limbah elektronik (e-waste) dan produk samping toksik dari industri panel surya. Sekarang salah satu perusahaan Inggris berharap untuk mengurangi masalah ini dengan membuat pabrik pertama di dunia, yaitu pabrik panel surya dengan tenaga angin. Aku kagum tidak ada yang pernah melakukannya sebelumnya.

Menurut siaran pers dari pelopor energi hijau Ecotricity, pabrik panel surya G24i bertenaga angin di Wales merupakan pabrik pertama di dunia yang membuat panel surya menggunakan energi angin, sebuah konsep 'Green dari Green'. G24i membuat panel surya ringan dan fleksibel untuk mengisi ulang laptop, smartphone dan gadget lainnya. Pada akhir tahun, pembuatan panel ini akan didukung oleh kincir angin tinggi 120 meter dan akan menghasilkan listrik yang cukup untuk 1.700 rumah.

CEO Ecotricity, Dale Vince, yang mempunyai proyek mobil listrik Nemesis, mengatakan: "Kami membangun kincir angin ini untuk mensuplai energi untuk G24i, ini bukan hanya yang pertama di dunia untuk sedikit perbaikan masa depan dan untuk saya setidaknya salah satu yang sangat menarik - gagasan bahwa kita dapat memanfaatkan energi terbarukan dan menggunakannya untuk membuat perangkat yang memanfaatkan energi terbarukan. Namun demikian, gagasan pabrik panel surya bertenaga terbarukan merupakan langkah maju yang sangat simbolis. Aku heran itu tidak terjadi cepat (saya yakin pembaca akan mengingatkan kita jika telah ada yang memiliki!), Tapi aku akan sangat terkejut jika kita tidak melihat lebih banyak proyek serupa dibangun di tahun-tahun mendatang.

(http://www.treehugger.com/files/2010/10/solar-panels-wind-energy.php)

Konsep Kendaraan Hibrida Ramah Lingkungan Berbasis Fuel Cell dan Solar Cell

Perkembangan jumlah penduduk dunia yang sangat pesat telah memaksa penggunaan energi dalam jumlah besar guna melestarikan kelangsungan hidup manusia tersebut. Saat ini sumber energi yang paling banyak digunakan adalah minyak bumi dan bahan bakar mineral lainnya seperti gas bumi dan batu bara, pengguanaan bahan-bahan tersebut sebagai sumber energi telah menimbulkan berbagai permasalahan lingkungan diantaranya polusi udara semakin meningkat, gas rumah kaca yang mengakibatkan pemanasan global serta permasalahan lain yang mengarah pada kelangkaan bahan bakar akibat sumber energi tersebut bersifat tidak dapat diperbaharui.

Penggunaan air sebagai bahan bakar diharapkan dapat mengatasi permaslahan tersebut, selain terdapat melimpah di bumi juga emisi buangan dari kendaraan berbahan bakar air tidak menimbulkan permasalahan lingkungan seperti yang ditimbulkan bahan bakar fosil. Kendaraan dengan sistem solar cell dan fuel cell merupakan salah satu alternatif pemecahan masalah tersebut, dimana air dapat langsung dikonversi menjadi hidrogen dan oksigen yang selanjutnya dialirkan ke sistem fuel cell untuk menghasilkan listrik untuk menggerakkan kendaraan. Salah satu keunggulan dari kendaraan jenis ini adalah tidak perlu menggunakan sistem penyimpan hidrogen sehingga harga produksi kendaraan ini akan lebih murah.

Fuel Cell

Fuel cell merupakan alat konversi energi elektrokimia yang akan mengubah hidrogen dan oksigen menjadi air, secara bersamaan menghasilkan energi listrik dan panas dalam prosesnya sistem elektrokimia (Booth, 1993). Struktur dari divais fuel cell terdiri dari sebuah lapisan elektrolit yang bergubungan dengan anoda dan katoda berpori pada kedua sisinya. Skema dari sistem fuel cell lengkap dengan reaktan, produk dan ion yang mengalir melalui elektrolit disajikan pada gambar 1.



Gambar 1. skema sistem fuel cell individu

Pada fuel cell, gas hidrogen sebagai bahan bakar berinteraksi terus menerus dengan anoda sebagai elektroda negatif dan oksigen terkonsumsi pada katoda sebagai elektroda positif. Reaksi elektrokimia terjadi pada kedua elektroda menghasilkan arus listrik. Karakteristik dan komponen fuel cell sendiri mirip dengan baterai pada umumnya, hanya terdapat perbedaan pada beberapa bagian. Baterai merupakan divais penyimpan energi, jumlah energi maksimum yang terkandung dalam baterai tergantung pada seberapa besar baterai tersebut dapat menampung senyawa kimia sebagai reaktan, energi listrik akan dihasilkan ketika reaktan terkonsumsi (discharged). Beberapa jenis baterai, reaktan dapat diregenerasi dengan dengan pengisisan ulang (recharging) dengan menggunakan energi dari sumber lain. Di sisi lain, fuel cell merupakan divais pengkonversi energi, dimana energi listrik akan terus dihasilkan selama masih terdapat suplai bahan bakar pada elektroda (Jacoby, 2003).

Saat ini di negara-negara maju sudah dikembangkan kendaraan berbasis fuel cell, dimana kendaraan tersebut tidak mengimisikan CO2 dan gas-gas berbahaya lainnya tetapi hanya mengemisikan uap air yang sama sekali tidak berbahaya bagi lingkungan.

Dye Sensitizer Solar Cell (DSSC)

Konversi energi matahari menjadi energi listrik dilakukan dengan menerapkan sistem fotovoltaik. Dewasa ini, perkembangan solar cell dengan menggunakan divais semikonduktor sudah demikian pesat. Secara sederhana solar cell fotovoltaik terdiri dari persambungan bahan semikonduktor bertipe p dan n (p-n junction semiconductor) yang jika tertimpa sinar matahari akan menghasilkan aliran elektron atau yang disebut dengan aliran listrik.

Dye Sensitized Solar Cell (DSSC) merupakan solar cell generasi ketiga setelah solar cell berbasis silikon dan solar cell berbasis semikonduktor polikristalin sebagai pendahulunya. Pada solar cell konvensional, foton atau sinar matahari berinteraksi dengan semikonduktor yang kemudian menghasilkan listrik. Sedangkan pada DSSC, dye (zat warna) yang ditempatkan pada permukaan semikonduktor yang berinteraksi dengan foton sebagai pemanen cahaya (Light harvesting). Secara teoritis efesiensi yang dihasilkan DSSC lebih baik karena zat warna bekerja pada daerah sinar tampak hingga infra merah, pada rentang panjang gelombang (energi) yang lebih lebar, sedangkan semikonduktor hanya dapat berinteraksi dengan sinar ultra violet (UV) yang faktanya sebagian besar sinar UV tidak sampai pada permukaan bumi karena terhalang oleh lapisan ozon (Gratzel, 2001).

Dibanding dengan dua generasi sebelumnya DSSC memiliki banyak keunggulan baik dari segi efesiensi maupun dari segi harga produksi. Dalam waktu penelitian selama sepuluh tahun efesiensi yang dicapai solar cell jenis ini telah menyamai efesiensi yang dicapai solar cell sebelumnya dengan penelitian yang dilakukan selama dua puluh lima tahun. Dari segi harga produksi, DSSC lebih murah, dengan kemudahan dalam memperoleh bahan baku serta proses fabrikasi yang tidak sulit. Salah satu contoh senyawa kompleks rutenium disajikan pada gambar 2.



Gambar 2. Kompleks Rhutenium dye N3 (cis-RuL2(NCS)2 (Gratzel, 2003)

Selain dapat berfungsi sebagai solar cell itu sendiri yakni energi listrik yang dihasilkan langsung dimanfaatkan, DSSC dapat pula dimanfaatkan sebagai pemecah air dalam proses produksi hidrogen. Energi listrik yang dihasilkan solar cell tidak dapat disimpan langsung dalam bentuk listrik, tetapi dapat disimpan dalam bentuk lain salah satunya dalam bentuk energi kimia seperti hidrogen. Hidrogen merupakan salah satu unsur yang dapat dijadikan bahan bakar, karena memiliki kandungan energi per satuan berat tertinggi diantara berbagai jenis bahan bakar (Bard et al, 1995). Penggunaan hidrogen saat ini cukup pesat perkembangannya dari kendaraan, alat elektronik portabel, hingga alat-alat rumah tangga.

Secara sederhana solar cell terdiri dari persambungan bahan semikinduktor bertipe p dan n (p-n junction semiconductor) yang jika tertimpa sinar matahari maka akan terjadi aliran elektron, aliran elektron ini disebut dengan aliran listrik. Bagian utama perubah energi sinar matahari menjadi listrik adalah absorber (penyerap). Sinar matahari terdiri dari berbagai macam jenis gelombang elektromagnetik, absorber diharapkan dapat menyerap sebanyak mungkin radiasi sinar yang berasal dari cahaya matahari tersebut. Untuk mendapatkan efesiensi solar cell yang tinggi maka foton yang berasal dari sinar matahari harus dapat diserap sebanyak-banyaknya, refleksi dan rekombinasi sinar diperkecil serta memperbesar konduktivitas bahan.

Produksi Hidrogen dari Pemecahan Air

Hidrogen dapat diproduksi dengan menggunakan kombinasi sederhana dua sistem berbeda yakni sistem fotovoltaik yang menghasilkan listrik dan sistem elektrolisis air. Setiap solar cell yang dapat menghasilkan tegangan lebih besar dari 1,5 V dapat digunakan untuk elektorlisis air secara langsung menghasilkan hidrogen dan oksigen (Dimroth et al, 2006).



Gambar 3. Sistem tunggal fotovoltaik dan elektrolisis air

Elektrolisis air pada elektrolit secara teoritis dapat berlangsung pada tegangan 1,23 V, tetapi pada praktiknya reaksi baru dapat berlangsung pada tegangan diatas 1,48 V. Hal ini karena berbagai faktor eksternal yang mempengaruhi sistem harus dilewati seperti potensial lebih dan hambatan. Secara termodinamika entalpi reaksi elektrolisis air sebesar 285,83 kJ/mol (25 ºC, 1 atm). Nilai tersebut termasuk energi bebas Gibbs sebesar ΔG = 237,1 kJ/mol dan energi panas TΔS = 48,7 kJ/mol yang memberikan kontribusi peningkatan entropi pada proses disosiasi yakni energi yang tidak digunakan untuk kerja (workless energy). Jika diasumsikan bahwa seluruh energi yang dibutuhkan untuk elektrolisis air berasal dari listrik, maka potensial termonetral sebesar 1,48 V (39kWh/kg) harus disuplai untuk setiap atom H. Ketika arus yang digunakan sangat kecil maka harus ada suplai enegi panas TΔS dari lingkungan (Dimroth et al, 2006).

Gabungan Sistem DSSC, Sistem Pemecah Air dan Fuel cell

Hidrogen yang dihasilkan dapat digunakan sebagai bahan bakar kendaraan maupun alat-alat portabel yang menggunakan sistem fuel cell. Selama ini proses produksi hidrogen membutuhkan energi yang cukup besar serta dihasilkan pula limbah yang dapat mencemari lingkungan. Penggunaan tandem device (divais gabungan) yakni sistem solar cell dan sistem elektrolisis air dalam memproduksi hidrogen memberikan banyak keuntungan diantaranya adalah ramah lingkungan dan tidak memerlukan biaya besar selama produksinya (Dimroth et al, 2006). Secara sederhana tandem device dapat digambarkan pada gambar 4.



Gambar 4. Desain konseptual reaktor penghasil hidrogen dengan
menggunakan DSSC sebagai pembangkit listrik

Penggunaan DSSC sebagai pemanen sinar matahari telah memberikan efisiensi konversi lebih dari 10%. Sistem divais gabungan dapat menjadi suatu alternatif produksi hidrogen sebagai bahan bakar yang ramah lingkungan, dengan memanfaatkan DSSC sebagai pembangkit listrik yang digunakan untuk elektrolisis air, menyebabkan ini menjadi solusi untuk mengatasi masalah kelangkaan energi dengan tetap menjaga kualitas lingkungan, sehingga kehidupan di bumi menjadi lebih baik dan aman.

Hidrogen yang dihasilkan dari sistem ini dapat langsung diaplikasikan pada fuel cell sebagai sistem tandem. Kendaraan yang menggunakan sistem tandem solar cell dan fuel cell memberikan kemungkinan untuk lebih nyaman dan aman dalam penggunaan, dengan kata lain kendaraan sistem tandem fuel cell dan solar cell membuka peluang untuk menggunakan air sebagai bahan bakar. Hal ini tentunya dapat mengurangi biaya produksi bahan bakar hidrogen di kilang-kilang, karena hidrogen akan diproduksi langsung pada kendaraan dan seketika langsung digunakan sebagai sumber energi, sehingga kecelakaan akibat terbakarnya hidrogen dapat dihindari. Gambar 5 menyajikan skema sederhana sistem tandem fuel cell dan solar cell ini.



Gambar 5. Skema sederhana sistem tandem solar cell dan fuel cell

Sumber Pustaka

Bard et al, 1995, Artificial Photosintesys: Solar Splitting of Water to Hydrogen and Oxigen, Acc Chem Res 28, University of Texas at Austin, Texas

Booth, D., 1993, Understanding Fuel Cells, Alternative Energy Engeenering, 707-923-4336

Dimroth et al, 2006, Hydrogen Production in a PV Concentrator Using III-V Multi Junction solar Cells, 4th World Conference on Photovoltaic Energy Conversion, Hawaii

Gratzel, 2001, Photoelectrochemical cells, insight review articles, Swiss Federal Institute of Technology, Lausanne Switzerland

Gratzel, M., 2003, Dye-Sensitized Solar Cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4 (2003) 145-153

Jacoby, M., 2003, Fuel Cells Move Closer To Market, Chemical and Engeneering, (2003) 32-36

Teknologi Penyimpanan Hidrogen

Gas hidrogen merupakan gas yang sangat reaktif. Bahkan pada konsentrasi 4-74%, gas hidrogen membentuk campuran eksplosif dengan udara. Campuran tersebut akan spontan meledak karena dipicu oleh api, panas atau sinar matahari. Karena alasan inilah maka penggunaan hidrogen sebagai bahan bakar harus sangat hati-hati. Walaupun densitas energi per gram gas hidrogen lebih besar daripada gasolin, namun densitas energi pervolumenya lebih rendah. Berbagai teknologi penyimpanan gas hidrogen telah dikembangkan dengan mempertimbangkan biaya, berat dan volume, efisiensi, keawetan, waktu pengisian dan pengosongan (charge and discharge), temperatur kerja serta efisiensinya.

1. Tangki bertekanan tinggi

Merupakan teknologi yang paling umum dan simpel walaupun secara volumetrik dan grafimetrik tidak efisien. Semakin tinggi tekanan, semakin besar energi per unit volume. Hidrogen tidak terkompresi mempunyai densitas energi 10,7 kJ/L, pada saat dikompresi pada tekanan 750 bar, densitas energinya meningkat menjadi 4,7 MJ/L. Namun masih jauh lebih kecil daripada gasoline, yaitu 34,656 MJ/L

2. Tangki hidrogen cair (Cryogenic)

Pada teknologi ini, gas hidrogen dicairkan pada suhu yang sangat rendah. Pada tekanan 1 atm, dibutuhkan temperatur hingga 22 K. Energi untuk mendinginkan hidrogen cukup energi yang besar, hingga mencapai 1/3 dari energi yang disimpan. Densitas energi hingga mencapai 8,4 MJ/L. Walaupun sangat berat, namun volumenya lebih kecil daripada tangki tekanan tinggi sehingga cocok untuk aplikasi statis.

3. Logam dan alloy

Logam atau paduan logam (alloy) menyerupai sponge yang dapat menyerap hidrogen. Hidrogen akan terabsorpsi pada ruang interstitial pada kisi kristal logam sehingga hidrogen tidak mudah terbakar dan lebih aman. Contohnya: TiFe (1,5 wt%) dan Mg2NiH4 (3,3 wt%).

4. Kimiawi

Pada metode ini, hidrogen disimpan dalam bentuk senyawa kimia lain yang lebih aman. Pada saat akan digunakan, baru senyawa ini diubah menjadi hidrogen melalui reaksi kimia.

a. Metanol

Infrastruktur untuk distribusi metanol sangat mudah karena sama dengan gasolin. Pada saat digunakan, metanol akan diubah menjadi gas H2 dengan melepaskan gas CO dan CO2.

b. Ammonia

Efisiensi volumetrik sedikit lebih tinggi daripada metanol namun bersifat toksik. Harus dikatalisi pada suhu 800-900 oC agar dapat melepaskan hidrogen. Biasanya didistribusikan dalam bentuk cair pada tekanan 8 atm.

c. Hidrida logam

Merupakan senyawa reaktif yang akan segera melepaskan hidrogen apabila bereaksi dengan air. Contohnya adalah NaH, LiH, NaAlH4, NaBH4, LiBH4, dan CaH2

5. Fisisorpsi:

Pada metode ini, hidrogen diadsorpsi pada permukaan bahan berpori seperti nanofiber grafit, nanotube karbon, zeolit dan Metal Organic Framework (MOF)

Dye Sensitized Solar Cell (DSSC)


Dye Sensitized Solar Cell (DSSC) merupakan sel surya yang terbuat dari semikonduktror yang dilapisi oleh zat warna untuk meningkatkan efisiensi konversi sinar matahari. DSSC tersusun atas elektroda kerja, elektroda counter dan elektrolit. DSSC bekerja pada daerah sinar tampak hingga sedikit infra merah. Sinar tampak merupakan gelombang elektromagnetik dengan panjang gelombang 390-770 nm, sedangkan infra merah sedikit lebih panjang.

Prinsip kerja dari DSSC sendiri disajikan pada gambar 1, material semikonduktor ini ditempatkan pada plat transparan berkonduktifitas membentuk lapisan tipis. Kemudian lapisan monolayer dye ditempatkan pada permukaan lapisan nanokristalin semikonduktor. Fotoeksitasi yang dialami oleh dye menghasilkan elektron tereksitasi dari pita valensi ke pita konduksi dye (1) yang kemudian masuk ke pita konduksi dari logam oksida (2), injeksi elaktron ini melaui hubungan antara titanium dengan gugus karboksil pada zat warna. Proses ini menghasilkan dye yang bermuatan positif dan partikel TiO2 ­yang bermuatan negatif. Elektron tersebut selanjutnya keluar melalui sirkuit eksternal menuju caunter electrode (3), aliran elektron ini dimanfaatkan sebagai energi listrik. Kekosongan elektron pada pita valensi dye digantikan oleh elektron yang berasal dari elektrolit, elektrolit yang digunakan pada DSSC biasanya adalah pelarut organik yang mengandung sistem redoks, contohnya adalah pasangan iodida-triiodida. Regenerasi sensitiser oleh iodida terjadi dengan proses pendonoran elektron pada pita valensi dari dye yang teroksidasi (5). Iodida diregenerasi kembali dengan reduksi triiodida pada counter electrode, dengan memanfaatkan elektron yang berasal dari eksternal sirkuit (4), proses ini berlangsung terus-menerus sebagai suatu siklus sehingga dihasilkan arus yang kontinyu.